Usage: handles = barweb(barvalues, errors, width, groupnames, bw_title, bw_xlabel, bw_ylabel, bw_colormap, gridstatus, bw_legend, error_sides, legend_type) Ex: handles = barweb(my_barvalues, my_errors, [], [], [], [], [], bone, [], bw_legend, 1, 'axis') barweb is the m-by-n matrix of barvalues to be plotted. barweb calls the MATLAB bar function and plots m groups of n bars using the width and bw_colormap parameters. If you want all the bars to be the same color, then set bw_colormap equal to the RBG matrix value ie. (bw_colormap = [1 0 0] for all red bars) barweb then calls the MATLAB errorbar function to draw barvalues with error bars of length error. groupnames is an m-length cellstr vector of groupnames (i.e. groupnames = {'group 1'; 'group 2'}). For no groupnames, enter [] or {} The errors matrix is of the same form of the barvalues matrix, namely m group of n errors. Gridstatus is either 'x','xy', 'y', or 'none' for no grid. No legend will be shown if the legend paramter is not provided 'error_sides = 2' plots +/- std while 'error_sides = 1' plots just + std legend_type = 'axis' produces the legend along the x-axis while legend_type = 'plot' produces the standard legend. See figure for more details The following default values are used if parameters are left out or skipped by using []. width = 1 (0 < width < 1; widths greater than 1 will produce overlapping bars) groupnames = '1', '2', ... number_of_groups bw_title, bw_xlabel, bw_ylabel = [] bw_color_map = jet gridstatus = 'none' bw_legend = [] error_sides = 2; legend_type = 'plot'; A list of handles are returned so that the user can change the properties of the plot handles.ax: handle to current axis handles.bars: handle to bar plot handles.errors: a vector of handles to the error plots, with each handle corresponding to a column in the error matrix handles.legend: handle to legend See the MATLAB functions bar and errorbar for more information Author: Bolu Ajiboye Created: October 18, 2005 (ver 1.0) Updated: Dec 07, 2006 (ver 2.1) Updated: July 21, 2008 (ver 2.3)